PLL FREQUENCY SYNTHESIZERS

The MC145104, MC145106, MC145107, MC145109, and MC145112 are phase locked loop (PLL) frequency synthesizer parts constructed with CMOS devices on a single monolithic structure. These synthesizers find applications in such areas as CB and FM transceivers. The device contains an oscillator/amplifier, a 2^{10} or 2^{11} divider chain for that oscillator signal, a programmable divider chain for the input signal and a phase detector. The MC145104/ $5106 / 5112$ have circuitry for a 10.24 MHz oscillator or may operate with an external signal. The MC145107/5109 require the external reference signal. Several of the circuits provide a 5.12 MHz output signal, which can be used for frequency tripling. A 2^{9} (MC145106/ $5109 / 5112$) or 2^{8} (MC145104/5107) programmable divider divides the input signal frequency for channel selection. The inputs to the programmable divider are standard ground-to-supply binary signals. Pull-down resistors on these inputs normally set these inputs to ground enabling these programmable inputs to be controlled from a mechanical switch or electronic circuitry.

The phase detector may control a VCO and yields a high level signal when input frequency is low, and a low level signal when input frequency is high. An out of lock signal is provided from the on-chip lock detector with a " 0 " level for the out of lock condition.

The MC145106 is the full pinout version of this family of parts and has the capability of all parts in the family. The MC145104/ $5107 / 5109 / 5112$ are limited pinout versions. See block diagrams for details.

- Single Power Supply
- Wide Supply Range: 4.5 to 12 Vdc
- 16 or 18 Pin Plastic Packages
- 10.24 MHzOscillator on Chip
- 5.12 MHz Output
- Programmable Division Binary Input Selects up to 2^{9}
- On-Chip Pull Down Resistors on Programmable Divider Inputs

Selectable Reference Divider, 210 or 211

Pin-for-Pin Replacements for: MC145104 for SM5104, MM55104, MM55114 MC145106 for MM55106, MM55116 MC145107 for SM5107
MC145109 for SM5109 MC145112 for SM5106

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {in }}$ and $V_{\text {out }}$ be constrained to the range $V_{S S} \leqslant \mathcal{V}_{\text {in }}$ or $v_{\text {out }} \leqslant V_{\text {DO }}$.

RECOMMENDED OPERATION: DC Supply Voltage 4.5 to 12 Vdc

ELECTRICAL CHARACTERISTICS ($_{\mathrm{A}}=25^{\circ}$ unless otherwise stated.)

TYPICAL CHARACTERISTICS

FIGURE 1 - MAXIMUM DIVIDER INPUT FREQUENCY versus SUPPLY VOLTAGE

TRUTH TABLE

Selection									Divide By N
P8	P7	P6	P5	P4	P3	P2	P1	P0	
0	0	0	0	0	0	0	0	0	2 (Note 1)
0	0	0	0	0	0	0	0	1	3 (Note 2)
0	0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	0	1	1	3
0	0	0	0	0	0	1	0	0	(ter 4
-	.		-	-		.	.	,	*
-	-		:	-	.	:	,	4,	
0	1	1	1	1	1	1	1.	4	255
.	-		.	.	.			*	
-	-	.	-	-	\cdots			:	
1	1	1	1	1	1	1	1	1	511

1: Voltage level $=V_{D O}$
0 : Voltage level $=0$ or open circuit input
Note 1: The binary setting of 00000000 and 00000001 on P8 to P0 results in a 2 and 3 division which is not in the $2^{\mathrm{N}}-1$ sequence. When pin is not connected (or is not listed as for the MC145104 and MC145107), the logic signal on that pin can be treated as a " 0 ".

FIGURE 2 - MAXIMUM OSCILLATOR INPUT FREQUENCY versus SUPPLY VOLTAGE

PIN DESCRIPTIONS

P0 - P8 - Programmable divider inputs (binary)
f_{in} - Frequency input to programmable divider (derived from VCO)
Oscin - Oscillator/amplifier input terminal Osc $_{\text {out }}$ - Oscillator/amplifier output terminal LD - Lock detector, low when out of lock
ϕ Det $_{\text {out }}$ - Signal for control of external VCO, output high when $f_{\text {in }} / N$ is less than the reference frequency; output low when $f_{\text {in }} / N$ is greater than the reference frequency. Reference frequency is the divided down oscillator input frequency typically 5.0 or 10 kHz .
FS - Reference Oscillator Frequency Division Select. When using 10.24 MHz Osc frequency, this control selects 10 kHz , a " 0 " selects 5.0 kHz .
$\div 2_{\text {out }}$ - Reference Osc frequency divided by 2 output; when using 10.24 MHz Osc frequency, this output is 5.12 MHz for frequency tripling applications.
$V_{\text {DD }}$ - Positive power supply
$V_{\text {SS }}$ - Ground

PLL SYNTHESIZER APPLICATIONS

The MC145104, MC145106, MC145107, MC145109, MC145112 ICs are well suited for Applications in CB radios because of the channelized frequency requirements. A typical 40 channel CB transceiver synthesizer using a single crystal reference is shown in Figure 3 for receiver IF values of 10.695 MHz and 455 kHz .

In addition to applications in CB radios, the MC14510412 ICs can be used as a synthesizer for several other systems. Various frequency spectrums can be achieved through the use of proper offset, prescaling and loop programming techniques. In general, 300-400 channels can be synthesized using a single loop, with many additional channels available when multiple loop approaches are employed. Figures 4 and 5 are examples of some possibilities.

In the aircraft syntheizer of Figure 5, the VHF loop (top) will provide a 50 kHz 360 channel system with 10.7 $\mathrm{MHz} \mathrm{R} / \mathrm{T}$ offset when only the 11.0500 MHz (transmit) and 12.1200 MHz (receive) frequencies are provided to
mixer \#1. When these signals are provided with crystal oscillators, the result is a three crystal, 360 channel, 50 kHz step synthesizer. When using the offset loop (bottom) in Figure 5 to provide the indicated injection frequencies for mixer \#1 (two for transmit and two for receive) 360 additional channels are possible. This results in a 720 channel, 25 kHz step synthesizer which requires only two crystals and provides R/T offset capability, The receive offset value is determined by the 11.31 MHz crystal frequency and is 10.7 MHz for the example.

The VHF marine synthesizer in Figure 4 depicts a single loop approach for FM transceivers. The VCO operates on-frequency during transmit and is offset downward during receive. The offset corresponds to the receiver IF (10.7 MHz) for channels having identical receive/transmit frequencies (simplex), and is (10.7 $4.6=6.1) \mathrm{MHz}$ for duplex channels. Carrier modulation is introduced in the toop during transmit.

FIGURE 3 - SINGLE CRYSTAL CB SYNTHESIZER FEATURING ON-FREQUENCY VCO DURING TRANSMIT

[^0][^1]FIGURE 4 - VHF MARINE TRANSCEIVER SYNTHESIZER

FIGURE 5 - VHF AIRCRAFT 720 CHANNEL TWO CRYSTAL FREQUENCY SYNTHESIZER

MOTOROLA Semiconductor Products Inc.

[^0]: Circuit diagrams utilizing Motorala products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and

[^1]: is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any cense under the patent rights of Motorolalnc or others.

